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In predicting the deformation and conditions of fracture of mate-
rials under complex loading program conditions one must consider the
entire duration of the deformation process,

The problem becomes complicated in cases of a simultaneous op~
eration of various mechanisms of deformation and fracture, e.g.,
when plastic deformation is superposed (once or repeatedly) on creep,

A promising phenomenological approach to this probiem may be
based on concepts of the mechanical equation of state of materials, A
hypothesis of the existence of the equation of state depending on a fi~
nite number of structural parameters was formulated by Kiner [1] for
the case of the three-dimensional law of plasticity and by Rabotnov
[2] for the case of creep and fracture under uniaxial stress state condi-
tions,

This article is concerned with the application of the hypothesis of
the mechanical equation of state to the problem of deformation and
fracture of materials (in the uniaxial case) under complex lcading pro-
gram conditions,

1. Basic assumptions. The material is loaded in
accordance with an arbitrary program determined for

instance by the time dependence of stress o (7) and t(r).

To formulate a phenomenological description of the
behavior of the material under these conditions, we
make the following assumptions.

(a) The strain components are additive

de =do+de +dp, 9 =0/]E + ut,
E=FE (@), » =uxn(t).

Here g, 5, e, and p denote the total strain, the re-
versible strain (elastic and thermal), the plastic strain,
and the creep strain, respectively, E denoting the
elasticity modulus.

(b) The variation in the plastic strain on the dif-
ferential portion of the loading path is described by

de = R.dv + R,do + R.dt. (1.1)

The terms in the right part of (1.1) describe the
simultaneous influence of time-controlled processes
(diffusion, aging) on the resistance to plastic defor-
mation (Rydr), the momentary isothermal variation
in the plastic strain due to stress variation (R,do),
and the influence of temperature changes on the re-
sistance to plastic deformation (Rydt). The creepstrain
is given by

dp = R dt (1.2)
where Ry is the creep rate.

(c) Values Rl (¢=1,2,3,4) are functions of time 7,

stress o, temperature t and structural parameters
qr (r =1,2,3,...,8)

Ry = 1(T, Oy by g1y gy s G). (1.3)

The structural parameters are described [2] by re~
lations of the following type:

dg; = andT -} aunds + aigdt, {1.4)
a;; = a;;(%, 6,8, G1, Ga, - - -, Gs). (1.5)

Each of the coefficients R} and aj; has two branches:
two values corresponding to any given combination of
T, 0, tand qp.

One of these branches (R, a'ij) corresponds fo
active plastic deformation, while the other (R';, “"ij)
relates to the unloading stage.

(d) The moment of the start of unloading coincides
with the maximum |e|. The condition for this maxi-
mum may be written in the form

e (R, + Ry dajdv + Ry’ dtd)<C 0. (1.6)

Here e denotes the plastic strain af the beginning
of the unloading stage.

If the condition for the maximum |e | is expressed
through coefficients R";, we obtain the necessary and
sufficient condition for unloading in the form

Ry" - Ry"do/Iv + Ry" dtjdv = 0. 1.7

Conditions (1. 6) can be satisfied in many ways,
i.e., do/dr and dt/dr during unloading are not unique
values. Hence it follows that (1.7) should beidentically
satisfied, i.e., at the initial unloading moment RY =
=0(l=1,2,3).

Funections (1.3) and (1.5) are unknown. A possible
way of solving the problem in question would entail
selecting a hypothetical form of these functions on the
basis of a heuristic generalization of simple experi-
ments and subsequently verifying the conclusions
reached by experiments under complex loading con-
ditions.

The variation in the mechanical properties of solids
is due to both time-controlled processes (aging, dif-
fusion, ete.) and irreversible deformations (plastic
and creep strains).

Bearing in mind the direct influence of irreversible
strains on the variation in mechanical properties, it
is convenient to write (1.4) in the following equivalent
form

gy == apdr - apde -oag T gt (1.8)

The previous symbols ajj are used as the new co-
efficients in (1. 8).

Let us apply the above concepts to certain problems
of deformation and fracture of materials under complex
loads at a constant temperature.
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As the structural parameters, let us take q; = u,

dy =V, 43 = ¢, where
u:Scde, U= Scr?p. (1.9)

Here the integration extends over the entire duration
of the deformation process. The parameter u repre-
sents the specific energy dissipated by the materials
as a result of short-lasting plastic deformation, while
v is the energy dissipated as a result of creep. The
third parameter § represents the degree of damage of
the material which is equal to zero in the initial state
and to one at the moment of fracture,
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The introduction of parameters u and v reflects the
fact that structural changes and the character of frac-
ture due to short-lasting plastic deformation and due
to creep are different, and this difference can be taken
into account by introducing not less than two structural
parameters.

If the loading program o(r) and the starting condi-
tions are known, the system of equations (1.1), (1.2),
and (1.9) is not sufficient to determine all the strength
characteristics; an additional relation of the (1.8) type
is necessary in the form

dp = hdu + hydv. (1.10)

Condition (1.10) represents an assumption that the
damage of the material is produced by irreversible
strains. Values h; and h, are obviously functions of
T, 0,u,v, and y. Taking this into account and using
(1.1), (1.2), (1.9), and (1.10), one can write the sys-
tem of equations determining the behavior of a non-
aging material in the form

de = Rydo, dp = Rydv, du= ode, dv=odp, (1.11)

dp = hydu + hydv. (1.12)

Here 1/R, is the plasticity modulus.

2. Fatigue. In this case it is necessary to take in
the system of equations (1.11) and (1.12) Ry =0 and to
choose the form of functions R, arid h;. The function
R, can be obtained from the law of repeated deforma-
tion
5— %yl d{5— 30

25, ] L

d{e-—e,) :m(

Here o and e, denote, respectively, the stress and
plastic strain at the moment of stress reversal (Fig.1);

m is a structure-insensitive characteristic of the ma-
terial; and oy is a structure-sensitive parameter anal-
ogous to the "instantaneous" yield point,

Relation (2. 1) expresses the Mazing prineiple [3]
with the parameter oy introduced to describe the in-
stability of the plastic hysteresis loop during cyclic
loading. From the standpoint of accepted phenomeno-
logical positions, one should regard o) asanew struc-
tural parameter and add a relation

do, = gidu + gdb. (2.2)

In a simplified variant let us assume integrability
of (2.2) and the existence of a relation in the form

O = 0y (u'r TP)- <2' 3)

The hypothesis (2. 3) can be used to interpret data
on the variation in the plastic hysteresis loop during
cyclic deformation [4] and to describe the differences
in the behavior of materials that harden, are stable,
or weaken under the influence of cyclic loads. It ap-
pears that the most typical variation in ¢y during cy-
clic loading is when the influence of strain hardening
predominates in the initial stages leading to a slight
increase in oy, after which oy begins to decrease with
increasing number of stress cycles as a result of weak-
ening measured in terms of the degree of damage ¥.

Certain experimental results point to the existence
of a stabilization stage to which corresponds a con-
stant (or almost constant) value of oy.. Let us write
(2.3) in the form

Gk=6k0(1——’lp)s(u). (2.4)

Here S(u) is the hardening function reflecting the
influence of strain-hardening on the yield point and
Okq 1s a material constant.

Let us choose the function h;(c, u, ) in the form

s

— VP, (2.5)

hl:c‘(1

Here c, and y are material constants.

The hypothesis (2.5) is based on regarding ¢ as the
degree of weakening of the material cross section [5].
The function Fy(u) should take into account the effect
of strain hardening on the material strength.

Let us consider cyclic deformation of a material
using relations (2.1), (2.4) and (2.5). The change in
u and ¢ during one deformation eycle is found from
relations (1.11), (2.1), (1.12) and (2.5), bearing in
mind that the variation in u and ¢ during one cycle is
small and that these values in the right sides of (2.4)
and (2. 5) may be taken as constant. Inthis way we obtain

%:@1 (g1=<§sde), (2.6)

d{ —c Fq{u) cl

Ty (C1=(§|6|che). (2.7)

Here the integration extends over one cycle, and n
denotes the number of cycles.

Using (2.1), from (2.6} and (2.7) we obtain for a
symmetrical cycle

I(m, 0)

" Ey

Asm+1 s
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Ty = I{m, )

+m-1
E(26k)m‘1 Agvem

(1 (m, 1) = e ngmv 4 + z)"‘-lxd:c>.

—1L

(2.8)

Here Ao is the stress interval (Fig. 1). From (2. 6)
and (2.7) and taking into account (2. 8), we obtain

A/ du = esAs Fy(u) /(1 — )Y, (2.9}

where ¢, is a material constant.
a) Fatigue at Ac = const, Taking for F,(u) a power
function

Fy(u) = u? (8 = const) (2.10)

from (2.9) at Ao = const (high-endurance fatigue) we
find

1 (1 — Pyt = %_i__é epAGY 413, (2.11)
At fracture ¢ = 1 and u = U, so that from (2.11) we
have

As = HU DT (2.12)

Here H is a material constant and U is the value of
u at the moment of fracture.

If it is assumed that there exists a stage of loop
stabilization, one may take ¢} =const; then, from (2.6),
the first relation of (2.8), and from (2.12), we obtain

w~Agmin U ~Agm1 N, U ~ N*

b= FrmrnE=s) (2.13)

The symbol ~ denotes proportionality, and N ig the
number of cycles to fracture.

The error due to assuming oj = const is compen-
sated by the fact that function F,(u) reflecting the real
instability of the material is determined from fatigue
test results.

Using (2.12) and (2.13), one can obtain the equation
for fatigue in its usual form:

NAst =K

(b:m—[—1+116>. (2.14)

Here K and b are constants determined by fatigue
tests at Ao = const.

Relation (2. 9) can be used to compute the conditions
of fracture at variable Ao.

Let us consider the case of stepwise loading, when
the material is subjected to n, loading cycles at Aoy,
(n, — n,) cycles at Agy, etc.

Integrating (2.9) and taking into account (2.12), we
obtain the basic condition for fracture under stepwise
loading conditions in the form

5 1-5 1-8
2 ™ {
~ Ui

i=1

(1o = 0). (2.15)

Here uj is the value of u at the end of the i-th cyclic
deformation interval.

The relationship between Ui and Aoj is described by
(2.12). At O = const, it follows from (2. 6) that

u; — Uiy ~ A6 (n; — niy). (2.16)

Here n; denotes the number of loading cycles ac~
cumulated at the end of the i-th interval. Taking into
account (2.12) and (2.138), from (2.16) one can obtain

up Ui (Ni—l )“_{_"i—"iq
U, T T N y 2

i-1 i

Upg iy [ N\
Ui - Ui_l ( Ni > ’
which makes it possible to express condition (2. 15) as

a function of nj and Nj. Here Nj is the number of cy-
cles to fracture at Aoj = const.

(2.17)
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Fig. 2

The conditions for fracture for a one-step loading
program are obtained from (2. 15) and (2. 17) in the form

(1 —a» 09) 215 (y 4 ava)i=® =

(2.18)

oom __ne—m N
(e=Fr0 v="5" 2=

For 6 = 0 we obtain from (2.18) the rule of linear
additivity of fatigue damage: x + y = 1. For values
0< 6 < 1, relation (2.18) predicts an increase in en-
durance in the initial stage at a > 1 (i.e., when the
lower stress is applied first), which corresponds to
the known prestraining effect. At a < 1 (i.e., when
the higher stress is applied first), relation (2.18) pre-
dicts a sharp reduction in the endurance in the initial
fatigue stages. Both these facts are observed in a ma-~
jority of tests under stepwise cyclic loading conditions.
A comparison between experimental data from [6] and
relation (2.18) is shown in Fig. 2.

Curve 1 relates to a stepwise variation in the stress
stress amplitude from o; = 24.3 (Ny = 1.7+ 10% to oy =
=19.8 (N, = 2.25 .10%) curves 2 correspond to
oy = 19.8 (N; = 2.25-10% 0, = 24.3 (N, = 1.7-10%;
and curves 3to oy = 19.8 (N; = 2.25 10%, o, = 26.5
(N, = 7-10%. (Stresses are given in kgf/mm?.)

The constant p in (2.18) is taken equal to 0.5 (on
the basis of considerations outlined below). Constant
6 = 0.593 was calculated from the condition of con-
gruence of relation (2.18) with experiment at a4 =
= 0.0755; these experimental results are shown in
Fig. 2 by crosses.
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Solid curves 2 and 3 were plotted from (2.18) for
6= 0.593, while dashed curves 2 and 3 represent
the corresponding experimental data for g, = 13.24
and a3 = 32.2.
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b) Fatigue at Ae = const. The relation between Ae
and Ac is found from (2.1) in the form

Ae = <'1 — L) L,
T 9m L E (96, )

Using this relation and (2.4), we find a solution of Eq.
(2.9) in the form

1 — (1 — P)Levim = e Aevim S F(z)dz,
0

F(z) = Fy(z) § (z)7 -1m) | (2.19)
Here c4 is a material constant.

If one starts from (2.10), soluticn (2.19) for O =
= const is analogous to solution (2.11). For this rea-
son all the derivative relations have the same form as
the relations for the case of Ao = const. The law of
fracture at Ae = const is obtained from (2.19) in the
form of the Koffin formula

m-+1 e Y
(k: ""L +m(1—-8) )

NAek = C (2.20)

Here C and k are material constants determined
from experimental data on low-endurance fatigue. In
many cases k &2,

The condition for fracture in the case of step-wise
variation in Ae is given by the same formulas ((2.15),
(2.17), (2.18)) as in the case of stepwise variation in
Ao.

From (2.13) and (2.20) it follows that 4 and k are
related as

w = (k — 1)/k — 1mk.

Fromthis it will be seenthat ; = 0,5 in all cases in which k =2, since
1/mk is small (0, 02-0,05), Formulas (2. 15) and (2. 18) contain an-
other unknown constant & which must be determined by experiment
under nonsteady-state conditions (e, g., by tests in which Ae is varied
stepwise from one level to another).

In Fig. 3 experimental data on stepwise-cyclic loading [8] are
shown side by side with graphs of formula (2. 18) plotted for £ = 0.5
and 6 = 0,9, curves 1 and 2 corresponding to ¢; = 2, 25 and a, = 0,231,
respectively; constant § was determined from the condition that the
theoretical curve (2, 18) should pass through one experimental point
(x=0.3, y=1).

3. Creep. Let us take R, = 0 in (1.11), (1.12) and
apply this system of equations to determine the condi-
tions of fracture as a result of creep at a variable
stress.

The parameter v will be described by a relation
slightly different from the fourth equation in (1.11),

dv = ¢**idy , (3.1)

where o is a constant in the expression for steady-
state creep

dp = Do=dx.
Using the equation of strength in the form

s
1=

=M P (Fa)= o)
we obtain a complete (formal) énalogy of the equations
of strength in fatigue and creep. As a result, the con-

dition for fracture in stepwise creep at stresses oy,

gy, ... Og has a form analogous to (2.15),
2 s
s 1-8 1-8*
v — Uy
1y —0),
igl Ve (v )

where Vj is the limiting value of v; corresponding to
fracture at a constant stress oy, At the same time, in
analogy to (2.12), we have

6y = BV 00,
From (3.1) it follows that at a constant ¢

U= 5u+117, V = ga+t T’

where T denotes the time to fracture at a stress ¢, and
T is the time during which the material is acted on by
the stress ¢. For stepwise loading, the final formulas
describing the conditions for fracture through ri and Ty
are (due to the above mentioned analogy) analogous to
the corresponding formulas for fatigue.

To obtain the criteria of fracture in creep, the fol-
lowing substitutions must be carried out in formulas
(2.15), (2.17) and (2.18); v must be substituted for u;,
Vj for Uj, 75 for nj, T; for Nj, 6' for 6, and p' for p.
At the same time

p=1—(+18,

where $ is a constant in the expression for long-term
strength:

To? = B.

Relations obtained in this way make it possible to
describe the nonlinear accumulation of damage ob-
served in several investigations (e.g., [9]).
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